Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 7(1): e0109221, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089065

RESUMO

Methylation of specific DNA sequences is ubiquitous in bacteria and has known roles in immunity and regulation of cellular processes, such as the cell cycle. Here, we explored DNA methylation in bacteria of the genus Ensifer, including its potential role in regulating terminal differentiation during nitrogen-fixing symbiosis with legumes. Using single-molecule real-time sequencing, six genome-wide methylated motifs were identified across four Ensifer strains, five of which were strain-specific. Only the GANTC motif, recognized by the cell cycle-regulated CcrM methyltransferase, was methylated in all strains. In actively dividing cell cultures, methylation of GANTC motifs increased progressively from the ori to ter regions in each replicon, in agreement with a cell cycle-dependent regulation of CcrM. In contrast, there was near full genome-wide GANTC methylation in the early stage of symbiotic differentiation. This was followed by a moderate decrease in the overall extent of methylation and a progressive decrease in chromosomal GANTC methylation from the ori to ter regions in later stages of differentiation. Based on these observations, we suggest that CcrM activity is dysregulated and constitutive during terminal differentiation, which we hypothesize is a driving factor for endoreduplication of terminally differentiated bacteroids. IMPORTANCE Nitrogen fixation by rhizobia in symbiosis with legumes is economically and ecologically important. The symbiosis can involve a complex bacterial transformation-terminal differentiation-that includes major shifts in the transcriptome and cell cycle. Epigenetic regulation is an important regulatory mechanism in diverse bacteria; however, the roles of DNA methylation in rhizobia and symbiotic nitrogen fixation have been poorly investigated. We show that aside from cell cycle regulation, DNA methyltransferases are unlikely to have conserved roles in the biology of bacteria of the genus Ensifer. However, we present evidence consistent with an interpretation that the cell cycle methyltransferase CcrM is dysregulated during symbiosis, which we hypothesize may be a key factor driving the cell cycle switch in terminal differentiation required for effective symbioses.


Assuntos
Metilação de DNA , Rhizobium , Medicago , Simbiose , Nitrogênio , Epigênese Genética , Metiltransferases
2.
Mol Plant Microbe Interact ; 34(5): 504-510, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33560865

RESUMO

Bacterial flagellin protein is a potent microbe-associated molecular pattern. Immune responses are triggered by a 22-amino-acid epitope derived from flagellin, known as flg22, upon detection by the pattern recognition receptor FLAGELLIN-SENSING2 (FLS2) in multiple plant species. However, increasing evidence suggests that flg22 epitopes of several bacterial species are not universally immunogenic to plants. We investigated whether flg22 immunogenicity systematically differs between classes of the phylum Proteobacteria, using a dataset of 2,470 flg22 sequences. To predict which species encode highly immunogenic flg22 epitopes, we queried a custom motif (11[ST]xx[DN][DN]xAGxxI21) in the flg22 sequences, followed by sequence conservation analysis and protein structural modeling. These data led us to hypothesize that most flg22 epitopes of the γ- and ß-Proteobacteria are highly immunogenic, whereas most flg22 epitopes of the α-, δ-, and ε-Proteobacteria are weakly to moderately immunogenic. To test this hypothesis, we generated synthetic peptides representative of the flg22 epitopes of each proteobacterial class, and we monitored their ability to elicit an immune response in Arabidopsis thaliana. The flg22 peptides of γ- and ß-Proteobacteria triggered strong oxidative bursts, whereas peptides from the ε-, δ-, and α-Proteobacteria triggered moderate, weak, or no response, respectively. These data suggest flg22 immunogenicity is not highly conserved across the phylum Proteobacteria. We postulate that sequence divergence of each taxonomic class was present prior to the evolution of FLS2, and that the ligand specificity of A. thaliana FLS2 was driven by the flg22 epitopes of the γ- and ß-Proteobacteria, a monophyletic group containing many common phytopathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Epitopos , Flagelina , Imunidade , Proteínas Quinases , Proteobactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...